

The Primacy Bias In Deep Reinforcement Learning

Evgenii Nikishin* Max Schwarzer* Pierluca D'Oro* Pierre-Luc Bacon Aaron Courville

Primacy in Human Learning

- "Steve is impulsive, critical, and smart"
- "Steve is smart, critical, and impulsive"

Same information, different perception

The Primacy Bias in Deep RL

A tendency to overfit early experiences that damages the rest of the learning process

Controlled Experiments

Severe overfitting might be unrecoverableData from an overfitted agent are sufficient

How can an agent properly learn from the data it collected?

Addressing the Primacy Bias

Periodically reset the agent's last layers while preserving its replay buffer

Contributions

- Analyze a special form of overfitting
- A simple remedy: resets
- Large performance gains
- Unlock novel data-efficient training regimes

Results

Method

SAC + resets

SAC + L2

DrQ + resets

DrQ + L2

DrQ + dropout

SAC + dropout

SAC

DrO

IQM

501 (389, 609)

656 (549, 753)

219 (160, 285)

412 (299, 524)

569 (475, 662)

762 (704, 815)

492 (414, 567)

463 (362, 566)

- Benchmarks
- DMC-dense (SAC)
 DMC-pixels (DrQ)
- Atari 100k (SPR)
- Resets are a special form of regularization for the primacy bias

Analysis of Learning with Resets

The agent is able to recover incredibly quickly

Resets are more beneficial with high RR and n

Ablations

- Reset depth depends on representation complexity
- Resets fix TD collapses and divergence
- Resetting the optimizer does not matter
- Agents are robust to the number of resets