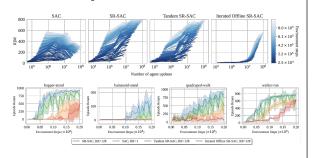
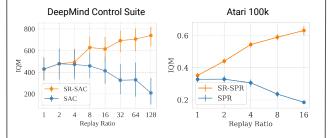


Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier

Pierluca D'Oro* Max Schwarzer* Evgenii Nikishin Pierre-Luc Bacon Marc G. Bellemare Aaron Courville

Replay Ratio Scaling

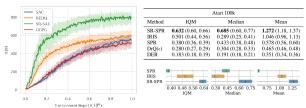

Change in an agent's performance caused by doing more updates for a fixed number of environment interactions

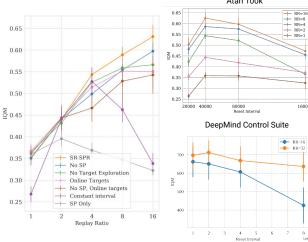

- In principle, intuitive way to be sample-efficient
- In practice, related to performance collapse

Resets for Replay Ratio Scaling

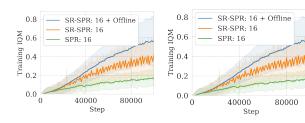
- The more updates, the more NNs lose ability to learn and generalize (Berariu et al, 2021)
- High replay ratio consumes this ability before enough data is collected
- Resetting at higher frequencies for larger replay ratios restores it

The importance of online RL




Resets and replay ratio scaling allow new levels of sample efficiency in model-free RL

Contributions


- Design simple replay ratio-scalable algorithms based on resets (SR-SAC and SR-SPR)
- Obtain state-of-the-art model-free efficiency
- Analyze requirements for replay ratio scaling
- Study the tradeoffs behind this paradigm

How to get replay ratio scaling?

Dealing with New Tradeoffs

