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Abstract

This work identifies a common flaw of deep reinforcement learning (RL) algorithms: a tendency to rely on early interactions
and ignore useful evidence encountered later. Because of training on progressively growing datasets, deep RL agents
incur a risk of overfitting to earlier experiences, negatively affecting the rest of the learning process. Inspired by cognitive
science, we refer to this effect as the primacy bias. Through a series of experiments, we dissect the algorithmic aspects of
deep RL that exacerbate this bias. We then propose a simple yet generally-applicable mechanism that tackles the primacy
bias by periodically resetting a part of the agent. We apply this mechanism to algorithms in both discrete (Atari 100k) and
continuous action (DeepMind Control Suite) domains, consistently improving their performance.
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1 Introduction

The primacy bias is a well-studied cognitive bias in human learning [13]]. Facing a sequence of experiences, humans often
form generalizations based on early evidence which might negatively impact future decision making [18].

The central finding of our work is that deep reinforcement learning (RL) algorithms are susceptible to a similar bias.
The primacy bias in deep RL is a tendency to overfit early interactions with the environment preventing the agent from
improving its behavior on subsequent experiences. Through a series of controlled experiments, we first expose plausible
causes of this phenomenon and show that common algorithmic features such as a high replay ratio [7, 4] and long n-step
targets [20] amplify the primacy bias. As a remedy, we then propose a simple resetting mechanism, compatible with any
deep RL algorithm equipped with a replay buffer, which allows the agent to forget a part of its knowledge.

Despite its simplicity, this resetting strategy consistently improves the performance of agents on benchmarks including the
discrete-action ALE [2] and the continuous-action DeepMind Control Suite [21]. Resets impose no additional computational
costs and require only two implementation choices: which neural network layers to reset and how often.

2 Preliminaries

We adopt the standard formulation of reinforcement learning [20] under the Markov decision process (MDP) and consider
deep RL algorithms where the action-value function Q (s, a) = E [> .-, v"7(s¢, ar)|so = s,a9 = a] and 7 (when needed)
are modelled by neural network function approximators. We focus on off-policy methods that learn Q. (s, a) though
temporal-difference (TD) learning [19] and reuse past experiences with a replay buffer [14]. The frequency of resampling
experience from the buffer is controlled by the replay ratio [7, 4] which plays a critical role in the algorithm’s performance:
higher replay ratios may allow better sample efficiency but incur a risk of overfitting. TD learning can be generalized
by using n-step targets E. [r(s;, ar) + v (i1, at41) + -+ + V" Qr (St4n, Gin )] for predicting Q- (s, a). Here, n controls a
trade-off between the (statistical) bias of @), estimates and the variance of the sum of future rewards.

3 The Primacy Bias

The main goal of this work is to understand how the learning process of deep reinforcement learning agents can be
disproportionately impacted by initial phases of training due to an effect called the primacy bias.

The Primacy Bias in Deep RL: a tendency to ovetfit initial experiences that damages the rest of the learning process.

This definition is wide-ranging: the primacy bias has multiple roots and leads

to multiple negative effects on the training of an RL agent, but they are all —— SAC with heavy priming
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connected to improper learning from early experiences.

The rest of this section presents two experiments intending to demonstrate
the existence and behavior of the phenomenon in isolation. First, we show
that excessive training of an agent on early interactions can fatally damage
the rest of the learning process. Second, we show that data collected by an
agent impacted by the primacy bias is adequate for learning, although the
agent cannot leverage due to its accumulated overfitting.

3.1 Heavy Priming Causes Unrecoverable Overfitting

One of the crucial algorithmic aspects impacting the primacy bias is degree
of the reliance of an agent on early data. It is vital for sample efficiency
to leverage initial experiences well, and to this end, the agent may sample
from its buffer and update its neural network several times before interacting
further with an environment. We hypothesize that such a practice may have
severe consequences and probe it to its extreme: could overfitting on a single
batch of early data be enough to entirely disrupt an agent’s learning process?

To investigate this question, we train Soft Actor-Critic [6] on the
quadruped-run environment from DeepMind Control suite (DMC) [21].
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Figure 1: Undiscounted returns on

quadruped-run for SAC with and with-
out heavy priming on the first 100 transi-
tions. An agent extremely affected by the
primacy bias is unable to learn even af-
ter collecting thousands of new transitions.
Mean and std are over 10 runs.

We use default hyperparameters, which

imply a single update for policy and value functions per step in the environment. Then, we train an identical agent in an
experimental condition that we refer to as heavy priming: after collecting 100 data points, we update the agent 10° times
using its replay buffer, before resuming standard training. Figure[I|shows that even after training on almost one million

new transitions, the agent with heavy priming is unable to solve the task.



This experiment conveys a simple message: overfitting to early experiences might inexorably damage the rest of the
learning process. Indeed, we will see in Section 4] that even a relatively small number of updates per step can cause similar
issues. The finding suggests that the primacy bias has compounding effects: an overfitted agent gathers worse data that
itself leads to less efficient learning that further damages the ability to learn and so on.

3.2 Experiences of Primed Agents are Sufficient

Once the agent is heavily impacted by the primacy bias, it might struggle to
reach satisfying performance. But is the data collected by an overfitted agent
unusable for learning? We train a SAC agent with 9 updates per step in the
MDP; due to the primacy bias, this agent performs poorly. Then, we initialize
the same agent from scratch but use the data collected by the previous SAC
agent as its initial replay buffer. Figure[2|demonstrates that returns collected
by this agent improve rapidly approaching the optimal task performance.

This experiment articulates that the primacy bias is not a failure to collect
proper data per se, but rather a failure to learn from it. The data stored in
the replay bulffer is in principle enough to have better performance but the
overfitted agent lacks the ability to distill it into a better policy. In contrast,
the randomly initialized neural networks are not affected by the primacy bias
and thus capable of fully leveraging the collected experience. This intuition
forms the basis of the algorithmic solution to the issues highlighted above.

3.3 Have You Tried Resetting It?

We now present a simple technique that mitigates the primacy bias. The
solution, which we dub resetting in the rest of the manuscript, is given by the
following recipe:

1000
= 750
2
&
< 500
3
A 250 N//www%wvbww
[sa)
—— SAC failing
0 SAC with failing agent buffer
0.00 0.25 0.50 0.75 1.00
Environment Steps (X 10°)
Figure 2: Undiscounted returns on

quadruped-run for SAC trained with 9
updates per step. SAC failingisa stan-
dard SAC agent; SAC with failing
agent buffer isaSAC agent initialized
with the replay buffer of the first agent,
which allows it to learn quickly. Mean and
std are over 10 runs.

Addressing the Primacy Bias: periodically re-initialize the last layers of the agent’s neural networks, preserving the replay buffer.

The next section analyzes both quantitatively and qualitatively the performance improvements provided by resetting in

addressing overfitting to early data.

4 Experiments

The goals of experiments are mostly twofold. First, we investigate across
different algorithms and domains the effect on performance of using resets
as a remedy for the primacy bias; next, we analyze the learning dynamics
induced by resetting, including its interaction with critical design choices
such as the replay ratio and n-step TD targets.

We focus our experimentation in two settings: discrete control, represented by
the 26-task Atari 100k benchmark [9], and continuous control, represented by
the DeepMind Control Suite [21]. We apply resets to three baseline algorithms:
SPR [17] for Atari, and SAC [6] and DrQ [10] for continuous control from
dense states and raw pixels respectively. For SPR, we reset the final layer of
a 5-layer Q-network, using three resets spaced 2 x 10* steps apart; for SAC,
we reset the entire policy and value networks every 2 x 105 steps; for DrQ, we
reset last 3 layers of the policy and value networks every 4 x 10° steps. In
every case, we also reset target networks. After each reset, we return directly
to standard training.

To provide rigorous evaluations of all algorithms, we follow recommenda-
tions from [1] and use interquartile mean (IQM) for measuring performance.

4.1 Resets Consistently Improve Performance

Method IOM

SPR + resets  0.478 (0.46, 0.51)
SPR 0.380 (0.36, 0.39)
DrQ(e) 0.280 (0.27, 0.29)
DER 0.183 (0.18,0.19)
CURL 0.113 (0.11, 0.12)
SAC + resets 656 (549, 753)
SAC 501 (388, 609)
DrQ + resets 757 (698, 810)
DrQ 570 (473, 665)

Table 1: Point estimates and 95% bootstrap
confidence intervals for the performance
of SPR, SAC, and DrQ with resets. Results
for SPR are computed over 20 seeds per
task, and for SAC and DrQ are computed
over 10 seeds. Other baselines are taken
from [1] and use 100 seeds.

The empirical evidence in Table|l|suggests that resets mitigate the primacy bias and provide significant benefits across
environments for the final performance of the agent. Remarkably, the magnitude of improvement provided by resets for
SPR is comparable to improvements of prior advances while not requiring additional computation costs.
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4.2 The Learning Dynamics of Resetting Agents
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At the first glance, resetting may appear as a drastic (if not wasteful) measure
as the agent must learn the parameters of the randomly initialized layers from
scratch every time. Figure g] shows a representative example of the learning
trajectories induced by resets. Surprisingly, the agent quickly reaches or
surpasses its prior performance after each reset. After resetting, the agent is
free from the negative priming provided by its past training iterations: it can
better leverage the data collected so far, thus improving its performance and
unlocking the possibility to generate higher quality data for its future updates.
The crucial element behind the success of resetting resides in preserving the
replay buffer across iterations allowing the agent to recover.
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Figure 3: An example showing effects of re-
sets for SAC (32 updates per step, resetting
4.3 The Elements Behind the Success of Resets every 2 x 10° steps) on hopper—hop. After
each reset, performance recovers quickly
We now provide an ablation study aiming at the question: under which due to the replay buffer and the reset-
conditions resets are maximally impactful? ted agent achieves higher overall returns.
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Replay Ratio. Our initial experiments in Section 3| suggest that the degree of can and sid ate over T rns

reliance on early data is a critical determinant of the strength of the primacy bias. We vary the replay ratio, the number of
gradient steps per each environment step, in SPR and SAC. Figure Eﬁ‘eports results for SAC while the conclusions for SPR
are the same. With fewer updates, resets provide little or no benefit, implying that agents might be underfitting early
data. With resets, however, SAC achieves its highest performance at the high replay ratio of 32, where resets increase
performance by over 100%. Resets thus allow improving sample efficiency by performing more updates per each data
point.

n-step targets. The effect of resets depends on the
variance of TD targets. We observe that with high n=20 + resets !
n the agent is more likely to overfit and hence the n=20 :

. . . =10 + resets [
resetting effect increases. Figure [4{demonstrates the gr—32 4 resets | E=10 rese ,
effect size for SPR; for SAC results are similar. RR=32 I n=5 + resets I

RR=9 + resets I n=5 =
The results with varying replay ratios and n-step tar- RR=9 E— n=3 + resets | -
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gets suggest that resets reshape the hyperparameter —pn; © "% — n=3 ==
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What to reset. The number of layers to reset is a
domain-dependent choice. We observed the best per-
formance when resetting only the last layer in SPR,
while for DrQ resetting the last 3 (out of 7) layers was
better. We conduct two additional ablations: resetting
or preserving the optimizer state and replay buffer.
We find that resetting the optimizer state has essen-
tially no impact because moment estimates are update rapidly. Resetting the replay buffer, however, made it impossible
for agents to quickly recover their prior performance.

Figure 4: The impact of resets on SAC at different replay ratios
(left) and SPR at different n-step return lengths (right). High
replay ratio makes the agent overly reliant on the early experince
and thus the resets have the largest influence. The effect size of
resets is largest for high n since it increases the variance of targets
exposing the agent to a risk of overfitting.

TD failure modes. Temporal-difference learning can be prone to divergence and collapse to a trivial solution. Once in
a failure mode, standard RL optimization struggles to recover from it. Adding resets solves this problem by giving the
agent the second chance. We observe that on sparse reward tasks where (). might collapse, the buffer contains trajectories
reaching the goal state suggesting that the primacy bias is more an issue of optimization rather than exploration.

5 Related Work

The primacy bias in deep RL is intimately related to memorization, optimization in RL, and cognitive science. Various
aspects of our work have been studied in the literature.

Addressing overfitting in RL. [11}[12] show that an approximator for value function gradually loses its expressivity due to
bootstrapping which might amplify the effects of the primacy bias. [8]] uses an on-policy buffer-free algorithm and distills
the previous network after resetting it to improve generalization. Forms of non-uniform sampling including re-weighting
recent samples [22] and prioritized experience replay (PER) [16] can be seen as a way to mitigate the primacy bias. SPR,
which already uses PER as a component, still benefits from resets.



Forgetting mechanisms. In contrast to the well-known phenomenon of catastrophic forgetting [5], several works have
observed catastrophic memorization [15], similar to the primacy bias. [3]] notices higher sensitivity of the trained networks
to early data. Resetting subnetworks has recently received more attention in supervised learning. [23]] shows that forgetting
might improve generalization and draws a connection to the emergence of compositional representations. These works
complement the evidence about the primacy bias in deep RL and add to our analysis of the regularizing effect of resets.

Cognitive science. The primacy bias (also known as the primacy effect) has been studied in human learning for many
decades [[13]. [18] argues that outcomes of the first experience have a substantial and lasting effect on subsequent behavior
and affect the outcomes of future decision making. Even though humans and RL systems learn under different conditions,
our findings provide evidence that artificial agents also exhibit this type of bias.

6 Conclusion

This work identifies the primacy bias in deep RL, a damaging tendency of artificial agents to overfit early experiences.
We demonstrate the dangers associated with this form of overfitting and propose a simple solution based on resetting a
part of the agent. The experimental evidence across domains and algorithms suggests that resetting is an effective and
generally applicable technique. We are intrigued by the results: if something as simple as resetting drastically improves
the performance, a room for advancements in deep RL is enormous. Overall, this work sheds light on the learning process
of deep RL agents, unlocks training regimes that were unavailable without resets, and opens possibilities for further
studies improving both understanding and performance of deep reinforcement learning algorithms.
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